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The Landau theory of second-order phase transitions : 
[rI3 and {rI2 for crystallographic point groups 

A. P. CRACKNELL and S. J. JOSHUA 
Department of Physics, University of Essex 
MS. received 10th October 1967 

Abstract. The symmetrized cube and the antisymmetrized square of the irreducible 
representations of the point groups are reduced and tabulated; these are the products 
which are relevant to Landau's theory of second-order phase transitions. 

Many of the properties of the thirty-two point groups have been tabulated in the book 
by Koster et al. (1963, to be referred to as KDWS). These authors present character tables, 
basis functions, subgroup relations and Kronecker products of the point-group irreducible 
representations (reps). The  symmetrized squares of the degenerate point-group representa- 
tions were tabulated by Jahn and Teller (1937). Certain other products of the point-group 
irreducible representations (reps), namely the symmetrized cube and the antisymmetrized 
square, are of interest in the Landau theory of second-order phase transitions (Landau and 
Lifshitz 1958, Lyubarskii 1960, Anderson and Blount 1965, Haas 1965), and it therefore 
seemed to be worth while to evaluate and tabulate these products in the notation of KDWS. 

The group-theoretical aspect of Landau's theory may be summarized as follows 
(Dimmock 1963, Ascher 1966, Birman 1966, Goldrich and Birman, to be published). If ;t is 
assumed that a crystal having a symmetry group G o  undergoes a second-order phase tran- 
sition to a structure having the symmetry group G,, a group of lower order than Go, then (i) 
the symmetrized cube [PI3 must not contain the totally symmetricalrepresentation(I', o r r ,  +) 
of Go,  and (ii) the antisymmetrized square {I'}z must not contain the representation of a polar 
vector. I', itself, is an irreducible representation of G o  that subduces onto the totally sym- 
metrical representation (I?, or I?,+) of G,. We therefore consider the evaluation of these 
two products. The character of an element R of the group G o  in [PI3, the symmetrized cube 
of the representation I?, is given by (Lyubarskii 1960) 

[XI3(R) = &X(R3) + 4X(R2)XP) + Q{X(RH3 

(X}"R2) = 4{X(R)I2 - 4x(R2)* 

(1) 

(2) 

and in {I?}2, the antisymmetrized square, by 

For a non-degenerate representation of a point group equations (1) and (2) can be sim- 
plified, since in this case X(R) is just equal to D,,(R), the sole element of the one-dimen- 
sional matrix representative of R; also D,,(R2) = {D,,(R)}2 and O11(R3) = (D1,(R)}3 
from the definition of a representation. Therefore 

[X13(R) = W d R 3 )  + D11(R2)D11(R) + Q{D,1(R))3 
= Q{D,,(R)13 + HMW3 + H&dR)I3 
= {X(R)l3. (3) 

Similarly, one can show that 
{ X m  = 0 (4) 

for a non-degenerate representation. The  expression on the right-hand side of equation (3) 
is simply the character of R in the triple inner Kronecker product I'@I'@I'. We there- 
fore conclude that if r is a non-degenerate representation then = 0, while [rI3 is 
identical with I'@I'@T' and so can easily be found by a repeated use of the multiplica- 
tion tables in KDWS; there is therefore no need for us to tabulate and [rI3 for the non- 
degenerate representations of the point groups. If I' is real as well as being non-degenerate, 
then I' @I? @I? is simply equal to I? ; the way in which complex representations fit into the 
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Landau theory requires rather special consideration anyway (Landau and Lifshitz 1958, 
pp. 440 and 448). Barker and Loudon (1967) assume the result of equation (3), while not 
stating it explicitly, and use r @F 

If I? is a degenerate representation, the above simple results do not hold and the deter- 
mination of and [FI3 is not so straightforward. For the degenerate point-group 
representations and [FIB have been evaluated, using equations (1) and (Z), and re- 
duced; they are given in the third and fifth columns of table 1 in the notation of KDWS. 
The  symmetrized cubes of the degenerate single-valued representations of 0 and Td have 
been given previously by Birman (1962). I n  the fourth column of table 1, F@F@r  is 
given, which can again be determined from KDWS. For example, for r, of 0 or Td table 82 
of KDWS gives 

rather than [rI3 in discussing the Landau theory, 

r4@r4~r4  = r4~(r l+r3+r4+r5)  = rl+rz+2r3+4r4+3r,. ( 5 )  
Groups that are direct products of a point group G with the point group Ci are not in- 
cluded in table 1 since their product representations can be found from those of G by 
adding + and - signs obeying the usual rules. 

Table 1 

rmar  

4r5 
3r0 +r, 
rs +3r7 

rl+rz+3r3 
3r4 +r, +r, 

rs+r,+3r, 
rl +rz +3re 

3r7 +rg 
317, +rg 

4rs 

rl+rz+3r3 
r1+r2+2r3+4r4+3r5 
rl+r2+2r3+3r4+4r5 

2rs +re 
217, +re 

[ria 
2r5 

2r5 
re+r7 
rs +r7 

rl+rz+r3 
r4 +r, +r, 

r3 +r4+r, 
r l+r2+re 

r7+r0 
re +rg 
2r9 

rl +3r4 
rs +r, 
re +r7 
rs +r7 

r l+ra+r3 
r,+2r4+r5 
rl +r4+2r5 

re 
rs re +r7 +4r, 

It would be a very arduous task to evaluate these products for all the representations 
of all the 230 space groups, and we make no attempt to do this. 
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